

ASX ANNOUNCEMENT 15 APRIL 2010

Infill Drilling at Sihayo Continues to Confirm High Grade Gold

Highlights

- Drilling of the South Eastern portion of the resource has continued to intersect significant widths of high grade mineralisation (>5g/t Au) following the discovery of this zone in the March drilling. Significant new results from the high grade zone included;
 - o SHDD 227 12m at 5.4g/t Au from 95m
 - o SHDD 230 6m at 7.9g/t Au from 84m
 - o SHDD 240 11m at 6.0g/t Au from 104m
 - o SHDD 253 10m at 6.1g/t Au from 83m
 - and 5m at 10.1g/t Au from 59m
 - o SHDD 260 7m at 7.4g/t Au from 111m
 - o SHDD 266 11m at 6.4g/t Au from 76m
- This high grade zone remains untested by drilling at depth to the east.
- Other significant results from infill drilling include;
 - o SHDD 224 2.9m at 6.6g/t Au from 1m
 - and 15.4m at 8.9g/t Au from 5.4m
 - o SHDD 226 5.7m at 7.7g/t Au from 24.3m
 - O SHDD 232 12m at 3.2g/t Au from surface
 - SHDD 244 14m at 2.9g/t Au from 1m
- Base on the updated interpretations the current program will be extended to include some expansion drilling on the north, east and south margin of the resource.
- Drilling has also commenced at the Old Camp Prospect on the northern margin of the Sihayo 1N Resource to include this prospect in the overall project inventory.
- The infill drilling is expected to be completed in mid May with an updated JORC resource estimate by end of June.

The Board of Sihayo Gold Limited (ASX; SIH) is pleased to announce updated results from the resource infill drilling at the Sihayo 1 North resource within its 75% owned Sihayo Project in North Sumatra, Indonesia. The drilling, which aims to upgrade the confidence in the resource estimate under the JORC code, continues to highlight the continuity of mineralisation. It has also continued to expand the zone of higher grade mineralisation within the southeastern portion of the resource.

The infill drilling is based on a nominal 25 by 50 metre grid, which is expected to be of sufficient density for a resource estimate classification of at least Indicated status. Significant intersections from the latest results include 11m at 6.4g/t Au, 11m at 6.0g/t Au and 5m at 10.1g/t Au from the deeper parts of the resource between 59 and 115 metres and 15.4 at 8.9g/t Au, 12m at 3.2g/t Au and 5.5m at 7.7g/t Au from the shallower regolith portion of the resource. Figure 1 shows the locations of the drill holes in relation to the previous resource estimate while Table 1 includes all new significant intersections above 1g/t Au.

The high grade zone can now be traced over an area of 200 by 200 metres and remains open to the east. Further drilling is planned as part of the current program to test the potential extensions outside the current resource outline.

There are currently 7 diamond drilling rigs conducting the resource drilling which is expected to be completed by mid May. The program has been expanded following the recent results to include additional drilling around the northern, eastern and southern margins of the current resource and the Old Camp Prospect, which lies 200 metres north of the resource. Significant results from previous drilling at Old Camp included; 13m at 4.2g/t Au, 27m at 2.7g/t Au and 8m at 3.1g/t Au.

Tony Martin

Chief Executive Officer

About Sihayo Gold Limited

Sihayo Gold Limited is an ASX listed (Code SIH) mineral exploration Company which is focused on the development of a 1Moz gold resource at its 75% owned Sihayo Project in Northern Sumatra in Indonesia. The Company was formally Sihayo Gold Limited but has undergone a number of significant changes to its Board and Management structure in line with its renewed focus on the Sihayo Gold project.

The Sihayo Gold Project currently has an Inferred JORC compliant resource estimate of 13.2 Mt at 2.4g/t Au containing 1.01 Moz of gold which extends from surface to a drilled depth of 150m. Potential extensions to the resource remain in the most part untested and there remains excellent potential to significantly expand the resource base.

The Company has put together a highly experienced project team which commenced work on a Definitive Feasibility Study "DFS" in late 2009. There are currently seven drilling rigs on site working towards upgrading the confidence in the resource estimate from Inferred status to Indicated by mid 2010. In addition metallurgical, geotechnical, infrastructure and environmental studies are well underway with the aim of completing the DFS by the end of 2010.

Figure 1: Sihayo 1 North resource infill drilling collar location and scoping study proposed pit outline

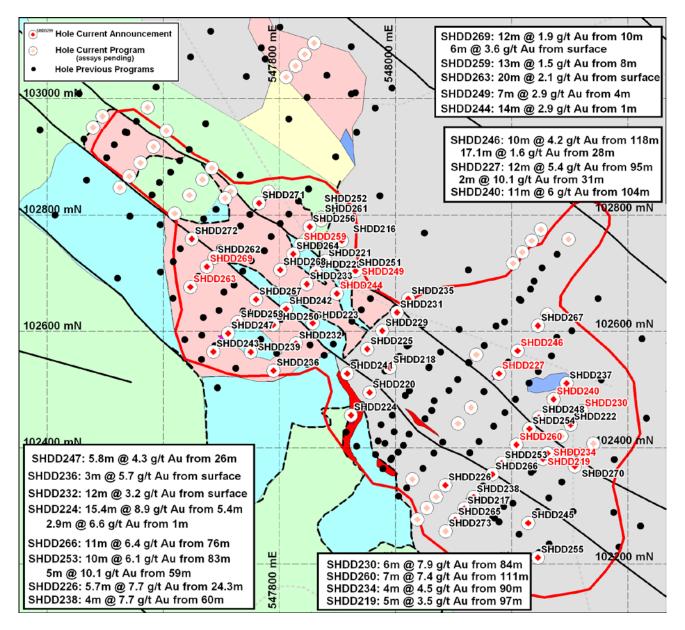


Table 1: Significant New Infill Drill Results Sihayo 1 North (>1g/t Au)

HOLE ID	UTM	UTM	Azimuth	Dip	Max	Depth	Gold Intercept
	East	North			Depth	From	•
SHDD217	548110	102290	0	-90	90	50	1m @ 4.3 g/t
SHDD218	547990	102530	0	-90	53	28	1.4m @ 2.8 g/t
SHDD219	548250	102380	0	-90	125	97	5m @ 3.5 g/t
SHDD220	547960	102490	0	-90	53	37	4m @ 1.3 g/t
SHDD221	547880	102720	40	-90	45	13	3m @ 1.1 g/t
						20.6	1.35m @ 4.4 g/t
SHDD222	548300	102440	40	-90	129	82	2m @ 1.1 g/t
OUDDOO	5.47000	100010	40	70	50	92	2m @ 6.3 g/t
SHDD223	547860	102610	40	-70	59	9	6m @ 1.9 g/t
SHDD224	547920	102450	0	-90	50	1	2.9m @ 6.6 g/t
OUDDOOF	5.47050	400570			47	5.4	15.4m @ 8.9 g/t
SHDD225	547950	102570	0	-90	47	27	1m @ 2.4 g/t
SHDD226	548080	102330	40	-90	70	21	2.2m @ 4.4 g/t
						24.3	5.7m @ 7.7 g/t
CHDDOOZ	F40470	400500			400	35	1m @ 2.4 g/t
SHDD227	548170	102520	0	-90	130	31	2m @ 10.1 g/t
						95	12m @ 5.4 g/t
						112	2m @ 2.7 g/t
SHDD228	E 47060	100700	0		20	119	2m @ 3.1 g/t
-	547860 547970	102700	0	-90	39	surface	4m @ 1.5 g/t
SHDD229	547970	102600		-90	73	35 40	1m @ 2.2 g/t 2m @ 1.2 g/t
CHDD330	E 40240	100460	0	00	100	84	
SHDD230	548310	102460	0	-90	106	93	6m @ 7.89g/t 1m @ 3.8 g/t
SHDD231	548000	102630	40	-90	53	36	3m @ 1.3 g/t
SHDD231	547830	102630	0	-90 -90	30	surface	12m @ 3.2 g/t
3000232	547650	102360	U	-90	30	2	1211 @ 3.2 g/t 1m @ 1.1 g/t
						12	2m @ 2.1 g/t
						40	1m @ 3.3 g/t
						48	6m @ 1.8 g/t
SHDD234	548260	102390	220	-70	135	90	4m @ 4.5 g/t
01155204	0-10200	102000	220	70	100	100	2m @ 1.6 g/t
						105	2m @ 4.5 g/t
SHDD236	547790	102530	0	-90	31	surface	3m @ 5.7 g/t
01122200	011100	102000				8	1m @ 1.7 g/t
SHDD238	548130	102310	0	-90	100	60	4m @ 7.7 g/t
SHDD239	547750	102560	0	-90	26	surface	2m @ 2.65 g/t
SHDD240	548270	102490	0	-90	134	104	11m @ 6 g/t
SHDD241	547920	102530	220	-70	100	6	2m @ 3.0 g/t
		3200		. •		17	2m @ 2.8 g/t
						75	3m @ 2.4 g/t
SHDD242	547810	102640	0	-90	56	5	1m @ 1.4 g/t
						9	6m @ 1.7 g/t
						19	5m @ 2.0 g/t
						37	1m @ 1.6 g/t
						41	1m @ 2.3 g/t
SHDD243	547670	102560	0	-90	36	surface	5m @ 1.6 g/t
						6.5	1.5m @ 2.3 g/t
						12	2m @ 1.7 g/t
SHDD244	547900	102670	0	-90	47	1	14m @ 2.9 g/t
SHDD245	548220	102270	0	-90	110	92	5.2m @ 1.6 g/t
						106	1m @ 1.5 g/t

HOLE ID	UTM East	UTM North	Azimuth	Dip	Max Depth	Depth From	Gold Intercept
SHDD246	548210	102570	0	-90	146	17	1m @ 1.2 g/t
						28	17.1m @ 1.6 g/t
						110	3m @ 2.5 g/t
						118	10m @ 4.2 g/t
SHDD247	547700	102590	0	-90	76	15	7m @ 1.1 g/t
						26	5.8m @ 4.3 g/t
						32.7	1.8m @ 1.7 g/t
						41	2m @ 1.4 g/t
01122010						59	3m @ 1.1 g/t
SHDD249	547910	102680	0	-90	60	4	7m @ 2.9 g/t
CUDDAFA	F 47700	400040	0	00	C4	19	1m @ 1.0 g/t
SHDD250	547790	102610	0	-90	61	surface 12	2m @ 2.4 g/t
						21.3	4.3m @ 2.4 g/t 4.7m @ 2.4 g/t
						21.3	7m @ 1.1 g/t
						47	2m @ 1.4 g/t
SHDD251	547920	102700	0	-90	60	18	3m @ 1.3 g/t
SHDD251	547870	102700	0	-90 -90	86	11	4m @ 1.6 g/t
011202	047070	102000	· ·	30	00	21	3m @ 2.2 g/t
SHDD253	548180	102370	0	-90	133	59	5m @ 10.1 g/t
						83	10m @ 6.1 g/t
						96	3m @ 3.2 g/t
						110	1m @ 3.7 g/t
						123	1m @ 1.4 g/t
SHDD254	548230	102430	0	-90	151	124	1m @ 1.2 g/t
			_			129	1m @ 2.0 g/t
SHDD255	548240	102210	0	-90	108	92	1m @ 6.8 g/t
SHDD256	547860	102780	0	-90	65	4	12m @ 1.4 g/t
SHDD257	547760	102650	0	-90	44	7 33	1m @ 1.3 g/t 1m @ 1.2 g/t
SHDD258	547730	102620	0	-90	62	surface	1m @ 1.5 g/t
						9	4m @ 1.5 g/t
						16	7m @ 1.8 g/t
						29.8	1.2m @ 1.8 g/t
SHDD259	547840	102750	0	-90	73	8	13m @ 1.5 g/t
SHDD260	548210	102400	0	-90	157	111	7m @ 7.4 g/t
SHDD261	547870	102790	0	-90	53	14	1m @ 1.2 g/t
						23.8	1m @ 1.5 g/t
						44	3m @ 2.1 g/t
SHDD262	547690	102730	40	-70	55	2 19	3m @ 1.7 g/t 1m @ 1.3 g/t
SHDD263	547650	102680	0	-90	42	surface	20m @ 2.1 g/t
31100203	347030	102000	0	-90	42	35	1m @ 2.0 g/t
SHDD264	547820	102730	0	-90	50	7	1m @ 1.1 g/t
						17	2m @ 2.7 g/t
SHDD266	548170	102350	0	-90	140	76 105	11m @ 6.4 g/t 1m @ 2.4 g/t
SHDD268	547800	102710	0	-90	65	5	1m @ 2.4 g/t
						10	1m @ 2.5 g/t
SHDD269	547680	102710	40	-70	52	surface	6m @ 3.6 g/t
						10	12m @ 1.9 g/t
SHDD271	547770	102820	0	-90	76	2 53	1m @ 1.1 g/t
SHDD273	549000	102260	0	-90	55	53 11	2m @ 2.0 g/t
30UU2/3	548090	102260	U	-90	55		1m @ 2.6 g/t
						21	5m @ 1.6 g/t

Notes to Table 1

- 1. All assays determined by 50gm fire assay with AAS finish by Intertek- Caleb Brett Laboratories of Jakarta
- 2. Lower cut of 1.0ppm Au used
- 3. A maximum of 2m of consecutive internal waste (material less than 1.0ppm Au) per reported intersection
- 4. All interval grades were calculated as a weighted average
- 5. All intervals reported as down hole lengths
- 6. Sampling regime as quarter core for PQ, half core for NQ and HQ diameter core
- 7. Quality Assurance and Quality Control (QAQC):
- 8. Coordinates in UTM grid system
- Note 1: It is advised that in accordance with the Australian Stock Exchange Limited Listing Rule 5.6, the information in this report that relates to Exploration Results is based on information compiled by both Mr Tony Martin and Mr Dean Pluckhahn, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Martin is the Chief Executive Officer of Sihayo Gold Limited and Mr. Pluckhahn is a full time employee of Sihayo Gold Ltd's 75% owned subsidiary company P.T. Sorikmas Mining ("Sorikmas"). Mr Martin and Mr Pluckhahn have sufficient experience which is relevant to the style of mineralisation and type of deposit which is under consideration and to the activity which Sihayo Gold is undertaking to qualify as a "Competent Persons" as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Martin and Mr Pluckhahn both consent to the inclusion in this report of the matters based on information in the form and context in which it appears.
- Note 2: All statements in this report, other than statements of historical facts that address future timings, activities, events and developments that the Company expects, are forward looking statements. Although Sihayo Gold Ltd, its subsidiaries, officers and consultants believe the expectations expressed in such forward looking statements are based on reasonable expectations, investors are cautioned that such statements are not guarantees of future performance and actual results or developments may differ materially from those in the forward looking statements. Factors that could cause actual results to differ materially from forward looking statements include, amongst other things commodity prices, continued availability of capital and financing, timing and receipt of environmental and other regulatory approvals, and general economic, market or business conditions.